Photobiomodulation (PBM) / Low Level laser Therapy (LLLT)

THOR Photomedicine Research Digest

www.thorlaser.com

Search criteria: Lung function

Search Date: 25 June 2020

Prepared for: THOR website

Prepared by: Dr. Patricia Burton

Notes: A selection of papers evidencing positive impact of PBM on lung inflammation, lung injury, pneumonia & acute respiratory distress syndrome (ARDS)
The aim of the study was to evaluate the efficiency of laser therapy included into the treatment of pneumonia in the elderly. A follow-up included the analysis of their clinical status and external respiratory function, pulmonary blood flow, and immunological parameters in 2 matched groups of pneumonia patients aged 60 to 72 years. Low-intensity laser therapy (transcutaneous sliding contact procedure) was used as part of routine treatment in one of the groups. The findings demonstrate that non-drug treatment had an undeniably positive impact. There was an earlier regress of clinical symptoms and a sound recovery of functional parameters. In the absence of side effects of this method, these data allow infrared laser therapy to be recommended for rehabilitation of elderly patients with pneumonia.

Vopr Kurortol Fizioter Lech Fiz Kult 2001 May-Jun -3 38578

Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines.

de Lima FM, Villaverde AB, Albertini R, Correa JC, Carvalho RL, Munin E, Araujo T, Silva JA, Aimbire F

Research and Development Institute, Av. Shishima Hifumi, 2911, Sao Jose dos Campos, SP, Brazil. flaviafisio@hotmail.com.

BACKGROUND AND OBJECTIVE: It is unknown if pro- and anti-inflammatory mediators in acute lung inflammation induced by intestinal ischemia and reperfusion (i-I/R) can be modulated by low-level laser therapy (LLLT). STUDY DESIGN/MATERIAL AND METHODS: A controlled ex vivo study was developed in which rats were irradiated (660 nm, 30 mW, 0.08 cm(2) of spot size) on the skin over the right upper bronchus 1 hour post-mesenteric artery occlusion and euthanized 4 hours later. For pretreatment with anti-tumor necrosis factor (TNF) or IL-10 antibodies, the rats received either one of the agents 15 minutes before the beginning of reperfusion. METHODS: Lung edema was measured by the Evans blue extravasation and pulmonary neutrophils influx was determined by myeloperoxidase (MPO) activity. Both TNF and IL-10 expression and protein in lung were evaluated by RT-PCR and ELISA, respectively. RESULTS: LLLT reduced the edema (80.1 +/- 41.8 microg g(-1) dry weight), neutrophils influx (0.83 +/- 0.02 x 10(6) cells ml(-1)), MPO activity (2.91 +/- 0.60), and TNF (153.0 +/- 21.0 pg mg(-1) tissue) in lung when compared with respective control groups. Surprisingly, the LLLT increased the IL-10 (0.65 +/- 0.13) in lung from animals subjected to i-I/R. Moreover, LLLT (0.32 +/- 0.07 pg ml(-1)) reduced the TNF-alpha level in RPAECs when compared with i-I/R group. The presence of anti-TNF or IL-10 antibodies did not alter the LLLT effect on IL-10 (465.1 +/- 21.0 pg mg(-1) tissue) or TNF (223.5 +/- 21.0 pg mg(-1) tissue) in lung from animals submitted to i-I/R. CONCLUSION: The results indicate that the LLLT attenuates the i-I/R-induced acute lung inflammation which favor the IL-10 production and reduce TNF generation. Lasers Surg. Med. 43:410-420, 2011. (c) 2011 Wiley-Liss, Inc.

Lasers Surg Med 2011 Jul 43(5) 410-20


This digest Copyright THOR Photomedicine Ltd 2020
Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS.


Nove de Julho University, Rua Vergueiro 239/245, Sao Paulo, SP CEP 01504-000, Brazil. Nove de Julho University, Rua Vergueiro 239/245, Sao Paulo, SP CEP 01504-000, Brazil. Nove de Julho University, Rua Vergueiro 239/245, Sao Paulo, SP CEP 01504-000, Brazil. University of Sao Paulo, School of Medicine, Department of Pathology (LIM 59), Av. Doutor Arnaldo 455, Sao Paulo, SP CEP 01246-000, Brazil. University of Sao Paulo, School of Medicine, Department of Clinical Medicine (LIM 20), Av. Doutor Arnaldo 455, Sao Paulo, SP CEP 01246-000, Brazil. Nove de Julho University, Rua Vergueiro 239/245, Sao Paulo, SP CEP 01504-000, Brazil. Nove de Julho University, Rua Vergueiro 239/245, Sao Paulo, SP CEP 01504-000, Brazil. Nove de Julho University, Rua Vergueiro 239/245, Sao Paulo, SP CEP 01504-000, Brazil. Nove de Julho University, Rua Vergueiro 239/245, Sao Paulo, SP CEP 01504-000, Brazil. Nove de Julho University, Rua Vergueiro 239/245, Sao Paulo, SP CEP 01504-000, Brazil. Electronic address: rodrelena@yahoo.com.br.

The present study aimed to investigate the effects low level laser therapy (LLLT) in a LPS-induced pulmonary and extrapulmonary acute respiratory distress syndrome (ARDS) in BALB/c mice. Laser (830nm laser, 9J/cm(2), 35mW, 80s per point, 3 points per application) was applied in direct contact with skin, 1h after LPS administration. Mice were distributed in control (n=6; PBS), ARDS IT (n=7; LPS orotracheally 10mug/mouse), ARDS IP (n=7; LPS intra-peritoneally 100mug/mouse), ARDS IT+Laser (n=9; LPS intra-tracheally 10mug/mouse), ARDS IP+Laser (n=9; LPS intra-peritoneally 100mug/mouse). Twenty-four hours after last LPS administration, mice were studied for pulmonary inflammation by total and differential cell count in bronchoalveolar lavage (BAL), cytokines (IL-1beta, IL-6, KC and TNF-alpha) levels in BAL fluid and also by quantitative analysis of neutrophils number in the lung parenchyma. LLLT significantly reduced pulmonary and extrapulmonary inflammation in LPS-induced ARDS, as demonstrated by reduced number of total cells (p<0.001) and neutrophils (p<0.001) in BAL, reduced levels of IL-1beta, IL-6, KC and TNF-alpha in BAL fluid and in serum (p<0.001), as well as the number of neutrophils in lung parenchyma (p<0.001). LLLT is effective to reduce pulmonary inflammation in both pulmonary and extrapulmonary model of LPS-induced ARDS.

J Photochem Photobiol B 2014 May 5 134 57-63

This digest Copyright THOR Photomedicine Ltd 2020
Low-Level Laser Therapy Restores the Oxidative Stress Balance in Acute Lung Injury Induced by Gut Ischemia and Reperfusion.


Department of Rehabilitation Sciences, Universidade Nove de Julho - UNINOVE. Rua Vergueiro, 235, Sao Paulo, SP, Brazil.

It is unknown if the oxidative stress can be regulated by low- level laser therapy (LLLT) in lung inflammation induced by intestinal reperfusion (i-I/R). A study was developed in which rats were irradiated (660 nm, 30 mW, 5.4 J) on the skin over the bronchus and euthanized 2 h after the initial of intestinal reperfusion. Lung edema and BALF neutrophils were measured by the Evans blue extravasation and myeloperoxidase (MPO) activity, respectively. Lung histology was used for analyzing the injury score. Reactive oxygen species (ROS) was measured by fluorescence. Both expression adhesion molecule (ICAM-1) and peroxisome-proliferator-activated receptor-γ (PPARγ) were measured by RT-PCR. The lung immunohistochemical localization of ICAM-1 was visualized as a brown stain. Both lung HSP 70 and glutathione protein were evaluated by ELISA. LLLT reduced neatly the edema, neutrophils influx, MPO activity and ICAM-1 mRNA expression. LLLT also reduced the ROS formation and oppositely increased GSH concentration in lung from i-I/R groups. Both HSP 70 and PPARγ expression also were elevated after laser irradiation. Results indicate that laser effect in attenuating the acute lung inflammation is driven to restore the balance between the pro- and anti-oxidants mediators rising of PPARγ expression and consequently the HSP 70 production. (c) 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology (c) 2012 The American Society of Photobiology.

Photochem Photobiol 2012 Aug 10


This digest Copyright THOR Photomedicine Ltd 2020
AIM: The objective of the present study was to elucidate the influence of low-intensity laser radiation on the results of the nitroblue tetrazolium (NBT) test in the patients presenting with community-acquired pneumonia. PATIENTS AND METHODS: A total of 100 patients with community-acquired pneumonia were available for the examination of whom 70 were treated with intravenous low-intensity laser irradiation of blood (ILIB) by means of the ILIB-405 technique during 7 days. The functional activity of neutrophils was estimated from their ability to reduce nitroblue tetrazolium in both spontaneous and stimulated NBT-tests. RESULTS: The analysis of the data obtained in the study has demonstrated the significant improvement of the results of the NBT tests in the group of patients receiving the ILIB treatments regardless of whether its content was originally elevated or reduced. CONCLUSION: The inclusion of intravenous low-intensity laser irradiation of blood in the combined treatment of the patients with community-acquired pneumonia appreciably promotes normalization of the bactericidal activity of neutrophils.

Vopr Kurortol Fizioter Lech Fiz Kult 2016 93(2) 9-12


This digest Copyright THOR Photomedicine Ltd 2020
More information available online

Visit www.thorlaser.com

Visit blog.thorlaser.com

Visit www.novothor.com

Watch video interviews

View training locations and dates

Sign up to our newsletter

Make a purchase enquiry